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LETTER TO THE EDITOR 

Partial differential matrix equations for generalized 
hypergeometric functions 

L E Wright, D S Onley and C W Soto Vargas 
Physics Department, Ohio University, Athens, Ohio, 45701, USA 

Received 25 January 1977 

Abstract. A method of handling a number of generalized hypergeometric functions in terms 
of first-order partial differential matrix equations is introduced. This method has many 
advantages in formal manipulations and in numerical integration. In particular, it allows 
investigation of the energy dependence of matrix elements arising in scattering problems in 
quantum mechanics. 

Many functions, very common in the solution of wave equations of various kinds, are 
special cases of the Whittaker functions (Whittaker and Watson 1927) or its close 
relative the confluent hypergeometric function: a few examples are Bessel functions, 
Coulomb wavefunctions, Laguerre functions, and Airy functions. Also common in 
such problems are functions defined by integrals over products of Whittaker functions, 
some of which may be identified, for example Appell functions or Lauricella functions, 
but many are nameless and have few recorded properties. We show here methods of 
handling such functions in terms of first-order differential matrix equations which have 
many advantages both in formal and numerical analysis and which are also capable of 
encompassing a much larger family of functions than simply those mentioned above. 

The Whittaker functions are normally defined as solutions of the differential 
equation 

The notation MK+ denotes the solution with the property 

M,,,(z) J z@+J, forz=O 

so that of the two solutions of (l), M,,w and M,,-,, one is regular at the origin. 
Whittaker functions also arise in the general solution of the equation 

where A,  B, U are 2 X 2 matrices. One of the simplest forms involving these functions is 
when 
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in which case a solution is 

This solution also arises in the separation in polar coordinates of the Dirac equation for 
an electron in a Coulomb field (Rose 1961). 

Also of interest are functions defined by integrals over products of n Whittaker 
functions: 

where the notation (0) indicates the subtraction of the contribution of poles which may 
occur at the origin. For n = 1,2 ,  and 3 the functions of ( 5 )  are identifiable as examples of 
the Gauss hypergeometric function, Appell functions and Lauricella functions (Appell 
and Fdriet 1926), the last two of which are functions of some complexity defined by n 
coupled partial differential equations of second order in n variables. We define a matrix 
function corresponding to that defined in ( 5 ) :  

m 

r({Ki}r {CL,), {ki}) = I UMnSn(knx) O * * O Uqp,(k,x) O U,,,,(k~x) dx 
( 0 )  

which is evidently a matrix, of order 2" X 2", whose elements are all functions of the type 
defined in (5 ) .  We show next that this matrix function satisfies equations of the form 

(6) 

First notice that the outer product 

W =  U,.,,(knx) 0. - -0 U,,,,(kzx) 0 U,,,,(kix) (7) 
wherein each function U is a solution of an equation of the type (3), is itself a solution of 
an equation of the same form but with A and B matrices of order 2" (here denoted by 
d, a)  and defined by 

&=Afl  OIzn-z+IzOAfl-iOIzn-~+. . .+Izfl-20A1 

~ = k ~ B O I z n - z + k f l - i I z O B O I z n - 4 + .  .+kiIzn-20B. 

Here I,,, denotes the m X m unit matrix. Each matrix A (see (4)) is a function of K ,  p 
and we have abbreviated A ( K ~ ,  pi )  by Ai simply. Consequently d is a function of { K ~ }  

and {p i }  only, whereas 94 is a function of {k i }  only. Now adopting the notation of Onley 
(1972) and Sud et a1 (1976) we write W defined in (7) as a function of these two matrices 
and the scalar x 

w = W ( d ,  a, x) 

and, from the same references, we will denote the integral by 
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Evidently, from (3) 

-- - Un(knx) 0 . .  .O (Ai/ki-Bx)Ui(kix) 0 .  . .  0 Ui(kix)  aw 
aki 

and using the following properties taken from Onley (1972): 

x W ( d ,  a, x )  = W ( d  + 1, a, x )  

ar 1 
- = ( - - I ~ , , - ~ ~  o 0 I ~ ~ - ~  - I ~ ~ - ~ ~  0 B 0 1~~-~a-1(d + i))r. 

a-ldr(d, a)  = r(d+ 1 ,  a), 
it is straightforward to see that 

(9) aki ki 

In (9) ,  aside from the explicit appearance of ki, the only function of the {ki}  is $8 
which is homogeneous and linear in these variables. The equation is evidently 
homogeneous in {ki} .  

To show the connection between the elements of r and the higher-order 
hypergeometric series, we consider the case n = 2. Writing the Whittaker functions in 
terms of the confluent hypergeometric series, ( 5 )  becomes 

Equation (6) has the regular solution 

gki, K z ,  Pi, Pz; Xi, X z )  

g ( K  1 + 1 ,  K 2  + 1, . . . 
(where 9(. . . ) is defined in ( 5 )  and the arguments omitted are the same in all rows). 
This equation is evidently a convenient alternative to define 9(. . . ) and its companion 
functions. It is interesting to see how this is related to the partial differential equations 
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satisfied by the Appell function: 

These equations may be rendered into the form of coupled first-order partial differen- 
tial equations in four functions-for example F2, aF2/ax1, aF2/ax2, and a2F2/axlax2, 
although the resulting equations are not particularly concise. Simpler forms for such 
equations arise from the techniques used here. To show this for the present case we 
begin by identifying the equation satisfied by the confluent function lFl(u, b, x )  and its 
contiguous neighbour lFl(u + 1, b, x ) .  Replacing the matrices A and B in (4) with the 
matrices 

c=( b - a - 1  - U  - ( b - U - 1 )  ) ' D=(:  -:) 
we find the regular solution 

Now, 
m 

r'(% + 1,9) = [ e-'u"V(u2, b2, x z u )  0 V(ul, bl ,  xlu) du 
'(0) 

where 

v = I2 0 c1+ c2 0 I2+ ffI4 

9 = ~ 1 I 2 @  D + x ~ D  0 G+14 

has the elements (regular column only) 

Fda, ~ 1 ,  az,  bi, bz; xi, x2)  

F z ( f f , U l + L a z , . * . )  

F 2 ( ( Y , u l + l , u 2 + l ,  . . . )  
r_( F 2 ( f f , a 1 , a z + l , . . . )  

This matrix function satisfies (6) with 

As an example of how these considerations may be applied, we consider an n = 3 
case corresponding to the product of incident and final wavefunctions and a Green 
function that might arise in scattering problems in quantum mechanics. Typically the 
incident energy (momentum) El(P1) is fixed and one requires matrix elements as a 
function of energy loss, U,  or momentum transfer, k, of the projectile where energy 
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conservation requires w = E l  -E2, E2(P2)  being the final projectile energy (momen- 
tum). In such cases, the r matrix of (8) is an 8 X 8 array of Lauricella functions, and 
satisfies 

d r  ar ak ar ap, ---t-- d o  ak aw ap2 aw 
-- 

where the partial differentials of I' are given by equations of the type (9). Equation (11) 
is straightforwardly solved by numerical integration given the initial values of r, thereby 
allowing the evaluation of the matrix elements over a complete energy range, including 
regions where direct evaluation of r may not be feasible. 

To summarize, we have introduced fist-order partial differential matrix equations 
whose solutions correspond to various generalized hypergeometric functions in n 
variables. The matrix representation of these functions is particularly convenient in 
formal manipulations and in the application of numerical integration techniques. 
Furthermore, we suggest that all generalized hypergeometric functions may be usefully 
treated as solutions of equations of the type (6). 
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